Ronny Drapkin, MD, PhD

Animal models are the backbone of cancer research and can illuminate facets of tumor development, progression, and response to therapy. Robust models for ovarian cancer have been difficulty to develop in part because it is a very heterogeneous disease. The appreciation that the tumor microenvironment imposes constraints on tumor cell biology emphasize the need to develop models in an immunocompetent setting. The goal of this project, A Fallopian Tube Derived Syngeneic Mouse Model of BRCA-Related Ovarian Cancer, is to create such a model. To achieve this goal, the team isolated cells from the fallopian tubes (the primary site of origin for most BRCA-associated ovarian cancer) of immunocompetent mice and used genome-editing to create defects in key oncogenes and tumor suppressor genes that would allow for a tumor to form when the cells are implanted back into the abdominal cavity of the mouse. This enables the team to explore the specific contribution of BRCA mutations on disease development, progression, and how the microenvironment reacts to these tumors and whether the genetic makeup of the tumors (e.g., BRCA vs non-BRCA) influences those interactions.